
SeismicMesh
Release V1.0

Oct 12, 2020

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Overview . 3
1.3 Installation . 7
1.4 Basics . 8
1.5 Modules . 15

Bibliography 25

Python Module Index 27

Index 29

i

ii

SeismicMesh, Release V1.0

Author Keith Roberts

Contact krober@usp.br

Web Site https://github.com/krober10nd/SeismicMesh

Date Oct 12, 2020

Abstract

This document describes the SeismicMesh package. This work aims to create end-to-end workflows to build quality
models suitable for Finite Element numerical wave propagators.

The package uses Python to wrap computationally intensive operations in C++ and has support for distributed
memory parallelism.

Contents 1

mailto:krober@usp.br
https://github.com/krober10nd/SeismicMesh

SeismicMesh, Release V1.0

2 Contents

CHAPTER 1

Contents

1.1 Introduction

Generating a high-quality graded mesh for a geophysical domain represents a modern challenge for sophisticated
geophysical simulation workflows. In these applications, a domain is discretized typically with simplicial elements
(e.g., triangles/tetrahedrals) that adapt in size to features of interest. These meshes are commonly used with Finite
Element and Finite volume methods to solve Partial Differential Equations (PDEs) that model physical processes such
as the acoustic or elastic wave equation. These kind of simulations are often used in geophysical exploration studies
to solve inverse problems such as Full Waveform Inversion.

There are many aspects to consider when building a mesh for a geophysical inverse problem. Mesh elements must be
sufficiently well-shaped, sized to maintain numerical stability, minimize numerical dissipation, and maximize physical
and numerical accuracy. For applications such as Travel Time Tomography and Reverse Time Migration, material
discontinuities need to be well represented to ensure reflections are as accurate as possible. In cases with complex and
irregular rock structures, explicit geometries may not exist complicating mesh generation workflows and requiring the
use of graphical user interfaces to create these geometries.

The purpose of this software is quickly assemble meshes for geophysical simulation using the Finite Element method.
This is accomplished by giving users simple controls to design their own meshes without having to learn or write much
code or more complex software. This program strives for automation and reproduction of the mesh.

This package contains the technology to build a 2D/3D mesh from a seismic velocity model in a scriptable manner.
An approach to build mesh sizing functions that can lead to high-quality, graded meshes with the generator is detailed.
For geometry creation, we rely on signed distance functions to define domain features implicitly, which avoids the
need to supply explicit locations of segments/surfaces.

1.2 Overview

This software aims to create end-to-end workflows (e.g., from seismic velocity model to simulation ready mesh) to
build quality two- and three-dimensional (2D and 3D) unstructured triangular and tetrahedral meshes for seismic
domains. The main advantage of triangular meshes over cubes or rectangles is their ability to cost-effectively resolve
variable material properties. These generated meshes are suitable for acoustic and elastic numerical wave propagators

3

SeismicMesh, Release V1.0

and a focus is placed on parallel unstructured mesh generation capabilities. A simple application program interfaces
(API) written in Python enables the user to call parallel meshing algorithms that can be scaled up on distributed
memory clusters.

SeismicMesh is currently being used to generate simplical meshes in 2D and 3D for acoustic and elastic wave prop-
agators written using a Domain Specific Language called Firedrake [firedrake]. These type of numerical simulations
are used in Full Waveform Inversion, Reverse Time Migration, and Time Travel Tomography applications.

1.2.1 Mesh definition

Note: Triangular and tetrahedral conformal meshes.

The domain Ω is partitioned into a finite set of cells 𝒯ℎ = 𝑇 with disjoint interiors such that

∪𝑇∈𝒯ℎ
𝑇 = Ω

Together, these cells form a mesh of the domain Ω. In our case, the cells are triangles and thus the mesh is a triangula-
tion composed of 𝑛𝑡 triangles and 𝑛𝑝 vertices in either two or three dimensional space. Note in 3D, the triangulation
is composed of tetrahedral but we still refer to it as a triangulation. In 2D, a triangle has 3 vertices, 3 edges, and 1 face.
In 3D, a tetrahedral has 4 vertices, 6 edges, and 4 facets. These cells 𝑡 are obtained by tessellating a set of vertices that
lie in two or three dimensional space using the well-known and efficient Delaunay triangulation algorithms.

High quality cells

Note: A high quality cell has a cell quality of 1.

Any set of points can be triangulated, but the resulting triangulation will likely not be useable for numerical simulation.
Thus, we strive to produce high-quality geometric meshes.

There are many definitions of mesh quality. Here I use the following formula to quantify how well-shaped the cells
where cell quality is defined as d * circumcircle_radius / incircle_radius (where d is 2 for triangles and 3 for tetrahedra).
The value is between 0 and 1, where 1 is a perfectly symmetrical simplex.

1.2.2 Software architecture

Note: Python calls peformant C++ libraries like CGAL and Boost.

The software is implemented in a mixed language environment (Python and C++). The Python language is used for
the API while computationally expensive operations are performed in C++. The two languages are linked together
with pybind11 and installation is carried out using cmake. The Computational Geometry Algorithms Library [cgal] is
used to perform geometric operations that use floating point arithmetic to avoid numerical precision issues. Besides
this, several common Python packages: numpy, scipy, meshio, segyio, and mpi4py are used.

1.2.3 Inputs

4 Chapter 1. Contents

SeismicMesh, Release V1.0

Seismic velocity model

A seismic velocity model is defined on an axis-aligned regular Cartesian grid in either 2D or 3D containing scalar
values (typically the P-wave velocity speed at each grid point).

Currently, SeismicMesh can read seismic velocity models from SEG-y files or in binary format. The latter requires
some more information; see the docstring.

Signed distance function

Given a point 𝑥, the signed distance function returns the 𝑑 distance to the boundary of the domain Ω.

Let Ω𝐷𝑅𝑁 be the domain in 𝑁 dimensions. The boundary of the domain to-be-meshed is represented as the 0-level
set of a continuous function:

() : 𝐷ß𝑅.

such that:

Ω := 𝑥𝐷, (𝑥) < 0

where : 𝐷𝑅 + ß𝑅 is Lipschitz continuous and called the level set function. If we assume |()| = 0 on the set
𝑥𝐷, (𝑥) = 0, then we have Ω = 𝑥𝐷, (𝑥) = 0 i.e., the boundary Ω is the 0-level set of (). The property that |()| = 0 is
satisfied if () is a signed distance function.

Note: We provide several simple signed distance functions: such as a Rectangle, Cube, and Disk. See the geometry
module.

Mesh sizing function

Given a point 𝑥, the sizing function 𝑓(ℎ) returns the isotropic mesh size defined at 𝑥. By mesh size, we specifically
mean the triangular edge length nearby x assuming the triangles will be close to equilateral in the finished mesh.

The purpose of get_sizing_function_from_segy to build this function directly from the seismic velocity model provided.

1.2.4 DistMesh algorithm

Note: This program uses a modified version of the DistMesh algorithm [distmesh] to generate simplical meshes.

For the generation of triangular meshes in 2D and 3D, we use a modified version of the DistMesh algorithm [distmesh].
The algorithm is both simple and practically useful as it can produce high-geometric quality meshes in N-dimensional
space. Further, by utilizing our approach to produce mesh size functions, the mesh generation algorithm is capable of
generating high-quality meshes faithful to user-defined target sizing fields. A benefit of this is that mesh sizes can be
built to respect numerically stability requirements a priori.

Briefly, the mesh generation algorithm is iterative and terminates after a pre-set number of iterations (e.g., 50-100). It
commences with an initial distribution of vertices in the domain and iteratively relocates the vertices to create higher-
geometric quality elements. The edges of the mesh act as springs that obey a constitutive law (e.g., Hooke’s Law)
otherwise referred to as a force function. During each meshing iteration, the discrepancy between the length of the
edges in the mesh connectivity and their target length from the sizing function produce movement in the triangles’
vertices.

1.2. Overview 5

SeismicMesh, Release V1.0

The boundary of the domain is enforced by projecting any points that leave the domain back into it each meshing iter-
ation. After a sufficient number of iterations, an equilibrium-like state is almost always approached and the movement
of the vertices becomes relatively small. The equilibrium-like state of the mesh connectivity corresponds to a mesh
that contains mostly isotropic equilateral triangles, which is critical for numerical simulation. However, as with nearly
all mesh generators, a sequence of mesh improvement strategies are applied after mesh generation terminates to ensure
the mesh will be robust for simulation.

Mesh adaptation

Warning: Functionality to adapt an existing mesh is a work in progress

3D Sliver removal

3D Delaunay mesh generation algorithms form degenerate elements called slivers. If any sliver exists in a 3D mesh,
the numerical solution can become unstable. Fortunately, this problem does not occur in 2D and, in 2D, a high quality
mesh free of degenerate elements is easily achieved. To tackle this problem in 3D, a method similar to that of [slivers]
was implemented. This algorithm aims at removing slivers while preserving the triangulation sizing distribution and
domain boundary.

The sliver removal technique fits well within the DistMesh framework. For example, like the mesh generation ap-
proach, the algorithm operates iteratively. Each meshing iteration, it perturbs only vertices associated with slivers
so that the circumspheres’ radius of the sliver tetrahedral increases rapidly (i.e.., gradient ascent of the circumsphere
radius) [slivers]. The method operates on an existing mesh that ideally already has a high-mesh quality and is efficient
since it uses CGAL’s incremental Delaunay capabilities. The perturbation of a vertex of the sliver leads to a local com-
binational change in the nearby mesh connectivity to maintain Delaunayhood and almost always destroys the sliver in
lieu of elements with larger dihedral angles.

Note: A sliver element is defined by their dihedral angle (i.e., angle between two surfaces) of which a tetrahedral has
6. Generally, if a 3D mesh has a minimum dihedral angle less than 1 degree, it will be numerically unstable. We’ve
had success in simulating with meshes that have minimum dihedral angles of minimally around 5 degrees.

1.2.5 Parallelism and speed

Note: This code uses distributed memory parallelism with the MPI4py package.

When constructing models at scale, the primary computational bottleneck in the DistMesh algorithm becomes the time
spent in the Delauany triangulation algorithm, which occurs each iteration of the mesh generation step. The other steps
involving the formation and calculation of the target sizing field and signed distance function are far less demanding.
Using mpi4py, I implemented a simplified version of the [hpc_del] to parallelize the Delaunay triangulation algorithm.
This approach scales well and reduces the time spent performing each meshing iteration thus making the approach
feasible for large-scale 3D mesh generation applications. The domain is decomposed into axis-aligned slices than cut
one axis of the domain. While this strategy doesn’t fare well with load balancing, it simplifies the implementation and
runtime communication cost associated with neighboring processor exchanges.

When possible, SeismicMesh uses low-level functionality from the CGAL package including the evaluation of geo-
metric predicates, circumball calculations, polygonal intersection tests, and incremental triangulation capabilities.

6 Chapter 1. Contents

SeismicMesh, Release V1.0

1.2.6 References

1.3 Installation

1.3.1 Requirements

You need to have the following software properly installed in order to build SeismicMesh:

• Python >= 3.0

Note: The file requirements.txt in the main directory indicates all the Python dependencies and their respective
version numbers. These packages should be installed at compile time by setuptools

Note: On some Linux systems, users may have to resort to apt install python3-segyio to installing segyio on their
systems.

• pybind11 >= 2.5

• C++ compiler (GNU or Intel) with support for std++14 or newer.

• cmake >= 3.0

• CGAL >= 5.0.0 which requires:

– MPFR

– GMP

– Boost > 1.4.8

Note: CGAL requires Boost, MPFR and GMP. These packages may already be installed on your standard Linux box.

Warning: Make sure your package manager is downloading CGAL >= 5.0 otherwise you will not be able to
install SeismicMesh!

1.3.2 Compilation by source

After installing all dependencies, perform

$ pip install -e .

Note: If you do not have administrative rights on your system, add the flag --user to the command above.

Warning: With this said, the preferred method of installation using pypi: pip install SeismicMesh

1.3. Installation 7

SeismicMesh, Release V1.0

1.3.3 Testing

Testing is accomplished with tox. The tox package can be installed like so:

pip install tox

To test the installation, serial and parallel capabilities, you can use tox from the top directory of the package:

$ tox

1.3.4 Installation on Clusters

Note: Make sure the CXX environment variable points to your intended compiler!

If installing on a cluster by source with a local installation of CGAL and Boost, you’ll need to edit setup.cfg with
the CMake arguments so to point the installation to the correct directories. Namely, in setup.py you’ll have to edit
the list called cmake_args to include

-DCMAKE_CXX_COMPILER=+/PATH/TO/CPPCOMPILER

-DBoost_INCLUDE_DIR=+/PATH/TO/BOOST/

-DMPFR_LIBRARIES=+/PATH/TO/libmpfr.a

-DMPFR_INCLUDE_DIR=+/PATH/TO/MPFR/include

Warning: Under construction. Contributions very welcome!

1.4 Basics

SeismicMesh supports the generation of both 2D and 3D meshes in either serial or parallel from seismic velocity
models.

Here I show how to build meshes from sizing functions created with the software and explain what the sizng options
mean. The API for serial/parallel and 2D/3D is identical.

Assuming you’ve coded a short Python script to call SeismicMesh (similar to what is shown in the examples), you
simply call the script with python for serial execution:

python your_script.py

Distributed memory parallelism can be used by first writing an extra import statement for mpi4py (import
mpi4py) near your other imports. Following this write the following line near the top of your script before you
call the SeismicMesh API):

comm = MPI.COMM_WORLD

Note: This line has no effect on serial execution and its fine to leave it in if you intend to only use serial execution.

8 Chapter 1. Contents

SeismicMesh, Release V1.0

Parallel execution takes place by typing by:

mpiexec -n N python your_script.py

where N is the number of cores (e.g., 2,3,4 etc.)

Warning: Oversubscribing the mesh generation problem to too many cores will surely lead to problems and slow
downs. In general, keeping the minimum number of vertices per rank to between 20-50k/rank results in optimal
performance.

1.4.1 Example data

Note: Users should create a directory called velocity_models and place their seismic velocity models there.

A 2D model (BP2004):

wget http://s3.amazonaws.com/open.source.geoscience/open_data/bpvelanal2004/vel_z6.
→˓25m_x12.5m_exact.segy.gz

A 3D model (EAGE Salt):

https://s3.amazonaws.com/open.source.geoscience/open_data/seg_eage_models_cd/Salt_
→˓Model_3D.tar.gz

1.4.2 File I/O and visualization of meshes

Meshes can be written to disk in a variety of formats using the Python package meshio (https://pypi.org/project/
meshio/).

Warning: Note that SeismicMesh sizing function makes the assumption that the first dimension is z and the second
is x while the third is y. This is done in this way since 2D seismological simulations take place in the z-x plane
and 3D in the z-x-y plane. As a result, the meshes when loaded into visualization software will appear rotated 90
degrees. For visualization, we can output in the vtk format using MeshIO (as shown in the examples) and then
load the vtk file into ParaView.

1.4.3 Some things to know

This seismic velocity model is passed to the get_sizing_function_from_segy along with the domain extents

from SeismicMesh import get_sizing_function_from_segy

Construct a mesh sizing function from a seismic velocity model
ef = get_sizing_function_from_segy(fname, bbox, other-args-go-here,...)

• The user specifies the filename fname of the seismic velocity model (e.g., either SEG-y or binary)

• The user specifies the domain extents of the velocity model as a tuple of coordinates in meters representing the
corners of the domain:

1.4. Basics 9

https://pypi.org/project/meshio/
https://pypi.org/project/meshio/

SeismicMesh, Release V1.0

𝑏𝑏𝑜𝑥 = (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)

• In 3D:

𝑏𝑏𝑜𝑥 = (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥)‘

1.4.4 Geometry

SeismicMesh can mesh any domain defined by a signed distance function. However, we provide some basic domain
shapes: a rectangle, a cube, or a disk.

For example:

from SeismicMesh import Rectangle, Cube, Disk

rectangle = Rectangle(bbox)
cube = Cube(bbox)
disk = Disk(x0=[0,0],r=1) # center of (0,0) with a radius of 1.0

Note: A good reference for various signed distance functions can be found at: https://www.iquilezles.org/www/
articles/distfunctions/distfunctions.htm

1.4.5 Mesh size function

The notion of an adequate mesh size is determined by a combination of the physics of acoustic/elastic wave propa-
gation, the desired numerical accuracy of the solution (e.g., spatial polynomial order, timestepping method, etc.), and
allowable computational cost of the model amongst other things. In the following sub-sections, each available mesh
sizing strategy is briefly described and pseudo code is provided.

Note: The final mesh size map is taken as the minimum of all supplied sizing functions.

Note: The mesh size map dictates the triangular edge lengths in the final mesh (assuming these triangles will be
equilateral).

Wavelength-to-gridscale

The highest frequency of the source wavelet 𝑓𝑚𝑎𝑥 and the smallest value of the velocity model 𝑣𝑚𝑖𝑛 define the shortest
scale length of the problem since the shortest spatial wavelength 𝜆𝑚𝑖𝑛 is equal to the 𝑣𝑚𝑖𝑛

𝑓𝑚𝑎𝑥
. For marine domains, 𝑣𝑚𝑖𝑛

is approximately 1,484 m/s, which is the speed of sound in seawater, thus the finest mesh resolution is near the water
layer.

The user is able to specify the number of vertices per wavelength 𝛼𝑤𝑙 the peak source frequency 𝑓𝑚𝑎𝑥. This sizing
heuristic also can be used to take into account varying polynomial orders for finite elements. For instance if using
quadratic P=2 elements, 𝛼𝑤𝑙 can be safely be set to 5 to avoid excessive dispersion and dissipation otherwise that
would occur with P=1 elements:

10 Chapter 1. Contents

https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm

SeismicMesh, Release V1.0

Construct mesh sizing object from velocity model
ef = get_sizing_function_from_segy(fname, bbox,

wl=3, # :math:`\alpha_{wl}` number of grid points per wavelength
freq=2, # maximum source frequency for which the wavelength is calculated

)

Resolving seismic velocity gradients

Seismic domains are known for sharp gradients in material properties, such as seismic velocity. These sharp gradients
lead to reflections and refractions in propagated waves, which are critical for successful imaging. Thus, finer mesh
resolution can be deployed inversely proportional to the local standard deviation of P-wave velocity. The local standard
deviation of seismic P-wave velocity is calculated in a sliding window around each point on the velocity model. The
user chooses the mapping relationship between the local standard deviation of the seismic velocity model and the
values of the corresponding mesh size nearby it. This parameter is referred to as the 𝑔𝑟𝑎𝑑 and is specified in meters.
For instance a 𝑔𝑟𝑎𝑑 of 50 would imply that the largest gradient in seismic P-wave velocity is mapped to a minimum
resolution of 50-m.:

ef = get_sizing_function_from_segy(fname, bbox,
grad=50, # the desired mesh size in meters near the sharpest gradient in the

→˓domain
)

Courant-Friedrichs-Lewey (CFL) condition

Almost all numerical wave propagators utilize explicit time-stepping methods in the seismic domain. The major ad-
vantage for these explicit methods is computational speed. However, it is well-known that all explicit or semi-explicit
methods require that the Courant number be bounded above by the Courant-Friedrichs-Lewey (CFL) condition. Ig-
noring this condition will lead to a numerically unstable simulation. Thus, we must ensure that the Courant number is
indeed bounded for the overall mesh size function.

After sizing functions have been activated, a conservative maximum Courant number is enforced.

1.4. Basics 11

SeismicMesh, Release V1.0

For the linear acoustic wave equation assuming isotropic mesh resolution, the CFL condition is commonly described
by

𝐶𝑟(𝑥) =
(∆𝑡 * 𝑣𝑝(𝑥))

𝑑𝑖𝑚 * ℎ(𝑥)

where ℎ is the diameter of the circumball that inscribes the element either calculated from 𝑓(ℎ) or from the actual mesh
cells, 𝑑𝑖𝑚 is the spatial dimension of the problem (2 or 3), ∆𝑡 is the intended simulation time step in seconds and 𝑣𝑝
is the local seismic P-wave velocity. The above equation can be rearranged to find the minimum mesh size possible
for a given 𝑣𝑝 and ∆𝑡, based on some user-defined value of 𝐶𝑟 ≤ 1. If there are any violations of the CFL, they can
bed edited before building the mesh so to satisfy that the maximum 𝐶𝑟 is less than some conservative threshold. We
normally apply 𝐶𝑟 = 0.5, which provides a solid buffer but this can but this can be controlled by the user like the
following:

ef = get_sizing_function_from_segy(fname, bbox,
cr=0.5, # maximum bounded Courant number to be bounded in the mesh sizing function
dt=0.001, # for the given :math:`\Delta t` of 0.001 seconds
...

)

Further, the space order of the method (𝑝) can also be incorporated into the above formula to consider the higher spatial
order that the simulation will use:

ef = get_sizing_function_from_segy(fname, bbox,
cr=0.5, # maximum bounded Courant number :math:`Cr_{max}` in the mesh
dt=0.001, # for the given :math:`\Delta t` of 0.001 seconds
space_order = 2, # assume quadratic elements :math:`P=2`
...

)

The above code implies that the mesh will be used in a simulation with 𝑃 = 2 quadratic elements, and thus will ensure
the 𝐶𝑟𝑚𝑎𝑥 is divided by 1

𝑠𝑝𝑎𝑐𝑒_𝑜𝑟𝑑𝑒𝑟

Mesh size gradation

In regions where there are sharp material contrasts, the variation in element size can become substantially large,
especially using the aforementioned sizing strategies such as the wavelength-to-gridscale. Attempting to construct a
mesh with such large spatial variations in mesh sizes would result in low-geometric quality elements that compromise
the numerical stability of a model.

Thus, the final stage of the development of a mesh size function ℎ(𝑥) involves ensuring a size smoothness limit, 𝑔
such that for any two points 𝑥𝑖, 𝑥𝑗 , the local increase in size is bounded such as:

ℎ(𝑥𝑗) ≤ ℎ(𝑥𝑖) + 𝛼𝑔||𝑥𝑖 − 𝑥𝑗 ||

A smoothness criteria is necessary to produce a mesh that can simulate physical processes with a practical time step as
sharp gradients in mesh resolution typically lead to highly skewed angles that result in poor numerical performance.

We adopt the method to smooth the mesh size function originally proposed by [grading]. A smoother sizing function is
congruent with a higher overall element quality but with more triangles in the mesh. Generally, setting 0.2 ≤ 𝛼𝑔 ≤ 0.3
produces good results:

ef = get_sizing_function_from_segy(fname, bbox,
...
grade=0.15, # :math:`g` cell-to-cell size rate growth bound
...

)

12 Chapter 1. Contents

SeismicMesh, Release V1.0

Domain padding

Note: It is assumed that the top side of the domain represents the free-surface thus no domain padding applied there.

In seismology applications, the goal is often to model the propagation of an elastic or acoustic wave through an infinite
domain. However, this is obviously not possible so the domain is approximated by a finite region of space. This can
lead to undesirable artificial reflections off the sides of the domain however. A common approach to avoid these
artificial reflections is to pad the domain and enforce absorbing boundary conditions in this extension. In terms of
meshing to take this under consideration, the user has the option to specify a domain extension of variable width on
all three sides of the domain like so:

ef = get_sizing_function_from_segy(fname, bbox,
domain_pad=250, # domain will be pad by 250-m on all three sides of the domain
...

)

In this domain pad, mesh resolution can be adapted according to following three different styles.

• Linear - pads the seismic velocities on the edges of the domain linearly increasing into the domain pad.

• Constant - places a constant velocity of the users selection in the domain pad.

• Edge - pads the seismic velocity about the domain boundary so that velocity profile is identical to its edge
values.

An example of the edge style is below:

ef = get_sizing_function_from_segy(fname, bbox,
domain_pad=250, # domain will be extended by 250-m on all three sides
padstyle="edge", # velocity will be extend from values at the edges of the domain
...

)

1.4. Basics 13

SeismicMesh, Release V1.0

Note: In our experience, the edge option works the best at reducing reflections with absorbing boundary conditions.

1.4.6 Mesh generation

After building your signed distance function and sizing function, call the generate_mesh function to generate the
mesh:

points, cells = generate_mesh(domain=rectangle, edge_length=ef, h0=hmin)

Note: ef is a sizing function created using get_sizing_function_from_segy

You can change how many iterations are performed by altering the kwarg max_iter:

points, cells = generate_mesh(domain=rectangle, edge_length=ef, h0=hmin, max_iter=100)

Note: Generally setting max_iter to between 50 to 100 iterations produces a high quality triangulation. By default it
runs 50 iterations.

When executing in parallel, the user can optionally choose which axis (0, 1, or 2 [if 3D]) to decompose the domain:

points, cells = generate_mesh(domain=cube, edge_length=ef, h0=hmin, max_iter=100,
→˓axis=2)

Note: Generally axis=1 works the best in 2D or 3D since typically mesh sizes increase in size from the free surface
to the depths of the model. In this situation, the computational load tends to be better balanced.

1.4.7 Mesh improvement (sliver removal)

3D Sliver removal

It is strongly encouraged to run the sliver removal method by passing the point of set of a previously generated mesh:

14 Chapter 1. Contents

SeismicMesh, Release V1.0

points, cells = sliver_removal(
points=points, domain=cube, h0=minimum_mesh_size, edge_length=ef

)

Note: Please remember to import this method at the top of your script (e.g., from SeismicMesh import sliver_removal)

By default, min_dh_angle_bound is set to 10. The sliver removal algorithm will attempt 50 iterations but will
terminate earlier if no slivers are detected. Generally, if more than 50 meshing iterations were used to build the mesh,
this algorithm will converge in 10-20 iterations.

Warning: Do not set the minimum dihedral angle bound greater than 15 unless you’ve already successfully ran
the mesh with a lower threshold. Otherwise, the method will likely not converge.

References

1.5 Modules

Here we document the public API

1.5.1 SeimsicMesh.geometry

Routines to perform geometrical/topological operations and calculate things on meshes.

SeismicMesh.geometry.calc_re_ratios(vertices, entities, dim=2)
Calculate radius edge ratios–mesh quality metric

Parameters

• vertices (numpy.ndarray[float x dim]) – point coordinates of the mesh vertices’

• entities (numpy.ndarray[int x (dim + 1)]) – mesh connectivity table

Returns ce_ratios: array of radius-to-edge ratios

Return type ce_ratios: numpy.ndarray[float x 1]

SeismicMesh.geometry.do_any_overlap(vertices, entities, dim=2)
Check if any entities connected to boundary of the mesh overlap ignoring self-intersections. This routine checks
only the 1-ring around each entity for potential intersections using barycentric coordinates.

Parameters

• vertex (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entities (numpy.ndarray[int x (dim+1)]) – mesh connectivity

• dim (int, optional) – dimension of mesh

Returns intersections: a list of 2-tuple of entity indices that intersect

Return type List[tuple(num_intersections x 2)]

SeismicMesh.geometry.linter(vertices, entities, dim=2, min_qual=0.1)
Remove and check mesh for geometric and toplogical defects.

1.5. Modules 15

SeismicMesh, Release V1.0

Parameters

• vertex (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entities (numpy.ndarray[int x (dim+1)]) – mesh connectivity

• dim (int, optional) – dimension of mesh

• min_qual (float, optional) – minimum geometric quality to consider “poor” quality

Return vertices updated mesh vertices

Return type numpy.ndarray[float x dim]

Returns entities: updated mesh connectivity

Return type numpy.ndarray[int x (dim+1)]

SeismicMesh.geometry.laplacian2(vertices, entities, max_iter=20, tol=0.01)
Move vertices to the average position of their connected neighbors with the goal to hopefully improve geometric
entity quality.

Parameters

• vertices (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

• max_iter (int, optional) – maximum number of iterations to perform

• tol (float, optional) – iterations will cease when movement < tol

Return vertices updated vertices of mesh

Return type numpy.ndarray[float x dim]

Returns entities: updated mesh connectivity

Return type numpy.ndarray[int x (dim+1)]

SeismicMesh.geometry.vertex_to_entities(vertices, entities, dim=2)
Determine which elements are connected to which vertices.

Parameters

• vertices (numpy.ndarray[float x dim]) – point coordinates of mesh vertices

• entities (numpy.ndarray[int x (dim + 1)]) – mesh connectivity

• dim (int, optional) – dimension of mesh

Returns vtoe: indices of entities connected to each vertex

Return type numpy.ndarray[int x 1]

Returns vtoe_pointer: indices into vtoe such that vertex v is connected to
vtoe[vtoe_pointer[v]:vtoe_pointer[v+1]] entities

Return type numpy.ndarray[int x 1]

SeismicMesh.geometry.remove_external_entities(vertices, entities, extent, dim=2)
Remove entities with all dim+1 vertices outside block.

Parameters

• vertices (numpy.ndarray[float x dim]) – point coordinates of mesh

• entities (numpy.ndarray[int x (dim + 1)]) – mesh connectivity

• extent (numpy.ndarray[tuple(float x (2*dim))]) – coords. of the local block extents

16 Chapter 1. Contents

SeismicMesh, Release V1.0

• dim (int, optional) – dimension of mesh

Returns vertices_new: point coordinates of mesh w/ removed entities

Return type numpy.ndarray[float x dim]

Returns entities_new: mesh connectivity w/ removed entities

Return type numpy.ndarray[int x (dim +1)]

Returns jx: mapping from old point indexing to new point indexing

Return type numpy.ndarray[int x 1]

SeismicMesh.geometry.unique_rows(A, return_index=False, return_inverse=False)
Similar to MATLAB’s unique(A, ‘rows’), this returns B, I, J where B is the unique rows of A and I and J satisfy
A = B[J,:] and B = A[I,:]

Parameters

• A (numpy.ndarray[int/float x N]) – array of data

• return_index (boolean, optional) – whether to return the indices of unique data

• return_inverse (boolean, optional) – whether to return the inverse mapping back to A
from B.

Returns B: array of data with duplicates removed

Return type numpy.ndarray[int/float x N]

Returns I: array of indices to unique data B.

Return type numpy.ndarray[int x 1]

Returns J: array of indices to A from B.

Return type numpy.ndarray[int x 1]

SeismicMesh.geometry.fix_mesh(p, t, ptol=2e-13, dim=2, delete_unused=False)

Remove duplicated/unused vertices and entities and ensure orientation of entities is CCW.

Parameters

• p (numpy.ndarray[float x dim]) – point coordinates of mesh

• t (numpy.ndarray[int x (dim + 1)]) – mesh connectivity

• ptol (float, optional) – point tolerance to detect duplicates

• dim (int, optional) – dimension of mesh

• delete_unused (boolean, optional) – flag to delete disjoint vertices.

Returns p: updated point coordinates of mesh

Return type numpy.ndarray[float x dim]

Returns t: updated mesh connectivity

Return type numpy.ndarray[int x (dim+1)]

SeismicMesh.geometry.simp_vol(p, t)
Signed volumes of the simplex elements in the mesh.

Parameters

• p (numpy.ndarray[float x dim]) – point coordinates of mesh

1.5. Modules 17

SeismicMesh, Release V1.0

• t (numpy.ndarray[int x (dim + 1)]) – mesh connectivity

Returns volume: signed volume of entity/simplex.

Return type numpy.ndarray[float x 1]

SeismicMesh.geometry.simp_qual(p, t)
Simplex quality radius-to-edge ratio

Parameters

• p (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• t (numpy.ndarray[int x (dim + 1)]) – mesh connectivity

Returns signed mesh quality: signed mesh quality (1.0 is perfect)

Return type numpy.ndarray[float x 1]

SeismicMesh.geometry.get_centroids(vertices, entities, dim=2)
Calculate the centroids of all the entities.

Parameters

• vertex (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entities (numpy.ndarray[int x (dim+1)]) – mesh connectivity

• dim (int, optional) – dimension of mesh

Returns centroids of entities

Return type numpy.ndarray[float x dim]

SeismicMesh.geometry.get_edges(entities, dim=2)
Get the undirected edges of mesh in no order (NB: are repeated)

Parameters

• entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

• dim (int, optional) – dimension of the mesh

Returns edges: the edges that make up the mesh

Return type numpy.ndarray[‘int‘x 2]

SeismicMesh.geometry.get_facets(entities)
Gets the four facets of each tetrahedral.

Parameters entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

Returns facets: facets of a tetrahedral entity.

Return type numpy.ndarray[int x 4]

SeismicMesh.geometry.get_boundary_vertices(entities, dim=2)
Get the indices of the mesh representing boundary vertices.

Parameters

• entities (numpy.ndarray[‘int ‘x (dim+1)]) – the mesh connectivity

• dim (int, optional) – dimension of the mesh

Returns indices: indices into the vertex array that are on the boundary.

Return type numpy.ndarray[float x dim]

18 Chapter 1. Contents

SeismicMesh, Release V1.0

SeismicMesh.geometry.get_boundary_entities(vertices, entities, dim=2)
Determine the entities that lie on the boundary of the mesh.

Parameters

• vertices (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

• dim (int, optional) – dimension of the mesh

Returns bele: indices of entities on the boundary of the mesh.

Return type numpy.ndarray[int x 1]

SeismicMesh.geometry.delete_boundary_entities(vertices, entities, dim=2, min_qual=0.1)
Delete boundary entities with poor geometric quality (i.e., < min. quality)

Parameters

• vertices (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

• dim (int, optional) – dimension of the mesh

• min_qual (float, optional) – minimum geometric quality to consider “poor” quality

Returns vertices: updated vertex array of mesh

Return type numpy.ndarray[int x dim]

Returns entities: update mesh connectivity

Return type numpy.ndarray[int x (dim+1)]

SeismicMesh.geometry.get_boundary_edges(entities, dim=2)
Get the boundary edges of the mesh. Boundary edges only appear (dim-1) times

Parameters

• entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

• dim (int, optional) – dimension of the mesh

Returns boundary_edges: the edges that make up the boundary of the mesh

Return type numpy.ndarray[int x 2]

SeismicMesh.geometry.get_boundary_facets(entities)
Get the facets that represent the boundary of a 3D mesh.

Parameters entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

Returns boundary_facets: facets on the boundary of a 3D mesh.

Return type numpy.ndarray[int x 4]

SeismicMesh.geometry.get_winded_boundary_edges(entities)
Order the boundary edges of the mesh in a winding fashiono

Parameters entities (numpy.ndarray[int x (dim+1)]) – the mesh connectivity

Returns boundary_edges: the edges that make up the boundary of the mesh in a winding order

Return type numpy.ndarray[int x 2]

SeismicMesh.geometry.vertex_in_entity3(vertex, entity)
Does the 3D vertex lie in the entity defined by vertices (x1,y1,z1,x2,y2,z2,x3,y3,z3)?

1.5. Modules 19

SeismicMesh, Release V1.0

Parameters

• vertex (numpy.ndarray[float x dim]) – vertex coordinates of mesh

• entity (numpy.ndarray[int x (dim+1)]) – connectivity of an entity

Returns vertex_in_entity3: logical flag indicating if it is or isn’t.

Return type boolean

1.5.2 SeimsicMesh.sizing

Function to build a 𝑓(ℎ) mesh sizing function from a seismic velocity model. Assumes the domain can be represented
by a rectangle (2D) or cube (3D) and thus builds a 𝑓(𝑑) accordingly.

SeismicMesh.sizing.get_sizing_function_from_segy(filename, bbox, comm=None,
**kwargs)

Build a mesh size function from a seismic velocity model.

Parameters

• filename (string) – The name of a SEG-y or binary file containing a seismic velocity
model

• bbox (tuple with size (2*dim). For example, in 2D (zmin, zmax, xmin, xmax)) – Bounding
box containing domain extents of the velocity model contained in filename.

• **kwargs – See below

Keyword Arguments

• hmin (float) – Minimum edge length in the domain (default==150 m)

• hmax (float) – Maximum edge length in the domain (default==10,000 m)

• wl (int) – Number of vertices per wavelength for a given (default==0 vertices)

• freq (float) – in hertz for which to estimate wl (default==2 Hertz)

• grad (float) – Resolution in meters nearby sharp gradients in velociy (default==0 m)

• grade (float) – Maximum allowable variation in mesh size in decimal percent (de-
fault==0.0)

• space_order (int) – Simulation will be attempted with a mesh using the polynomial order
space_order of the basis functions (default==1)

• dt (float) – Theoretical maximum stable timestep in seconds given Courant number Cr
(default==0.0 s)

• cr_max (float) – The mesh simulated with this dt has this maximum Courant number
(default==1.0)

• pad_style (string) – The method (edge, linear_ramp, constant) to pad velocity in the
domain pad region (default==None)

• domain_pad (float) – The width of the domain pad in -z, +x, -x, +y, -y directions (de-
fault==0.0 m).

• units (string) – The units of the seismic velocity model (default=’m-s’)

• nz (int) – REQUIRED FOR BINARY VELOCITY MODEL. The number of grid points
in the z-direction in the velocity model.

20 Chapter 1. Contents

SeismicMesh, Release V1.0

• ny (int) – REQUIRED FOR BINARY VELOCITY MODEL. The number of grid points
in the y-direction in the velocity model.

• nx (int) – REQUIRED FOR BINARY VELOCITY MODEL. The number of grid points
in the x-direction in the velocity model.

• byte_order (string) – REQUIRED FOR BINARY VELOCITY MODEL. The order of
bytes in a 3D sesimic velocity model (little or big).

Returns a SizeFunction object with a obj.bbox field and an obj.eval method.

Return type a SizeFunction object

SeismicMesh.sizing.write_velocity_model(filename, ofname=None, comm=None, **kwargs)
Reads and then writes a velocity model as a hdf5 file

Parameters

• filename (string) – filename of a velocity model (either .segy or .bin)

• ofname (string, optional) – filename of output hdf5 file

• comm (MPI4py communicator, optional) – MPI communicator

• **kwargs – See below

Keyword Arguments

• nz (int) – REQUIRED FOR BINARY VELOCITY MODEL. The number of grid points
in the z-direction in the velocity model.

• ny (int) – REQUIRED FOR BINARY VELOCITY MODEL. The number of grid points
in the y-direction in the velocity model.

• nx (int) – REQUIRED FOR BINARY VELOCITY MODEL. The number of grid points
in the x-direction in the velocity model.

• byte_order (string) – REQUIRED FOR BINARY VELOCITY MODEL. The order of
bytes in a 3D sesimic velocity model (little or big).

• bbox (tuple) – Coordinates of the velocity model’s domain extents. Only required if
padding the domain.

• domain_pad (float) – Width of the domain pad in meters.

• pad_style (string) – Type of padding.

SeismicMesh.sizing.plot_sizing_function(cell_size, stride=1, comm=None)
Plot the mesh size function in 2D

Parameters

• cell_size (a callable function object) – a callable function that takes a
point and gives a size

• stride (int, optional) – skip stride points to save on memory when plotting

• comm (MPI4py communicator, optional) – MPI communicator

1.5.3 SeimsicMesh.generation

Functions to build and improve a simplical mesh that conforms to the signed distance function 𝑓(𝑑) and 𝑓(ℎ).

SeismicMesh.generation.generate_mesh(domain, edge_length, comm=None, **kwargs)
Generate a 2D/3D mesh using callbacks to a sizing function edge_length and signed distance function domain

1.5. Modules 21

SeismicMesh, Release V1.0

Parameters

• domain (A geometry.Rectangle/Cube/Disk object or a function object.) – A
function that takes a point and returns the signed nearest distance to the domain boundary
Ω.

• edge_length (A SizeFunction object, a function object, or a scalar value.) – Edge
lengths in the domain (e.g., triangular edge lengths assuming all triangles are equilateral).

• comm (MPI4py communicator object, optional) – MPI4py communicator

• **kwargs – See below

Keyword Arguments

• h0 (float) – The minimum edge length in the domain. REQUIRED IF USING A VARI-
ABLE RESOLUTION EDGE LENGTH

• bbox (tuple) – Bounding box containing domain extents. REQUIRED IF NOT USING
edge_length

• verbose (int) – Output to the screen verbose (default==1). If verbose‘==1 only start and
end messages are written, ‘verbose‘==0, no messages are written besides errors, ‘ver-
bose > 1 all messages are written.

• max_iter (float) – Maximum number of meshing iterations. (default==50)

• seed (float or int) – Psuedo-random seed to initialize meshing points. (default==0)

• perform_checks (boolean) – Whether or not to perform mesh linting/mesh cleanup. (de-
fault==False)

• pfix (array-like) – An array of points to constrain in the mesh. (default==None)

• axis (int) – The axis to decompose the mesh (1,2, or 3). (default==1)

• delta_t (float) – Psuedo-timestep to control movement of points (default=0.10)

Returns points: vertex coordinates of mesh

Return type points: (numpy.ndarray[float x dim])

Returns t: mesh connectivity table.

Return type t: numpy.ndarray[int x (dim + 1)]

SeismicMesh.generation.sliver_removal(points, domain, edge_length, comm=None,
**kwargs)

Improve an existing 3D mesh by removing degenerate cells. commonly referred to as slivers.

Parameters

• points (np.ndarray) – An array of points that describe the vertices of an existing (higher-
quality) mesh.

• domain (A geometry.Rectangle/Cube/Disk object or a function object.) – A
function that takes a point and returns the signed nearest distance to the domain boundary Ω

• edge_length (A SizeFunction object or a function object.) – A function that can
evalulate a point and return an edge length (e.g. length of the triangular edge)

• comm (MPI4py communicator object, optional) – MPI4py communicator

• **kwargs – See below

Keyword Arguments

22 Chapter 1. Contents

SeismicMesh, Release V1.0

• h0 (float) – The minimum edge length in the domain. REQUIRED IF USING A VARI-
ABLE RESOLUTION EDGE LENGTH.

• verbose (int) – Output to the screen verbose (default==1). If verbose‘==1 only start and
end messages are written, ‘verbose‘==0, no messages are written besides errors, ‘ver-
bose > 1 all messages are written.

• max_iter (float) – Maximum number of meshing iterations. (default==50)

• perform_checks (boolean) – Whether or not to perform mesh linting/mesh cleanup. (de-
fault==False)

• pfix (array-like) – An array of points to constrain in the mesh. (default==None)

• axis (int) – The axis to decompose the mesh (1,2, or 3). (default==1)

• min_dh_angle_bound (float) – The minimum allowable dihedral angle bound. (de-
fault==10 degrees)

• max_dh_angle_bound (float) – The maximum allowable dihedral angle bound. (de-
fault==170 degrees)

1.5. Modules 23

SeismicMesh, Release V1.0

24 Chapter 1. Contents

Bibliography

[hpc_del] Peterka, Tom, Dmitriy Morozov, and Carolyn Phillips. “High-performance computation of distributed-
memory parallel 3D Voronoi and Delaunay tessellation.” SC‘14: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014.

[distmesh] P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2), pp.
329-345, June 2004 (PDF)

[firedrake] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T.
Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: automating the
finite element method by composing abstractions. ACM Trans. Math. Softw., 43(3):24:1–24:27, 2016. URL:
http://arxiv.org/abs/1501.01809, arXiv:1501.01809, doi:10.1145/2998441.

[cgal] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0.2 edition, 2020

[slivers] Tournois, Jane, Rahul Srinivasan, and Pierre Alliez. “Perturbing slivers in 3D Delaunay meshes.” Proceed-
ings of the 18th international meshing roundtable. Springer, Berlin, Heidelberg, 2009. 157-173.

[grading] Persson, Per-Olof. “Mesh size functions for implicit geometries and PDE-based gradient limiting.” Engi-
neering with Computers 22.2 (2006): 95-109.

25

http://arxiv.org/abs/1501.01809

SeismicMesh, Release V1.0

26 Bibliography

Python Module Index

s
SeismicMesh.generation, 21
SeismicMesh.geometry, 15
SeismicMesh.sizing, 20

27

SeismicMesh, Release V1.0

28 Python Module Index

Index

C
calc_re_ratios() (in module Seis-

micMesh.geometry), 15

D
delete_boundary_entities() (in module Seis-

micMesh.geometry), 19
do_any_overlap() (in module Seis-

micMesh.geometry), 15

F
fix_mesh() (in module SeismicMesh.geometry), 17

G
generate_mesh() (in module Seis-

micMesh.generation), 21
get_boundary_edges() (in module Seis-

micMesh.geometry), 19
get_boundary_entities() (in module Seis-

micMesh.geometry), 18
get_boundary_facets() (in module Seis-

micMesh.geometry), 19
get_boundary_vertices() (in module Seis-

micMesh.geometry), 18
get_centroids() (in module Seis-

micMesh.geometry), 18
get_edges() (in module SeismicMesh.geometry), 18
get_facets() (in module SeismicMesh.geometry), 18
get_sizing_function_from_segy() (in mod-

ule SeismicMesh.sizing), 20
get_winded_boundary_edges() (in module Seis-

micMesh.geometry), 19

L
laplacian2() (in module SeismicMesh.geometry), 16
linter() (in module SeismicMesh.geometry), 15

P
plot_sizing_function() (in module Seis-

micMesh.sizing), 21

R
remove_external_entities() (in module Seis-

micMesh.geometry), 16

S
SeismicMesh.generation (module), 21
SeismicMesh.geometry (module), 15
SeismicMesh.sizing (module), 20
simp_qual() (in module SeismicMesh.geometry), 18
simp_vol() (in module SeismicMesh.geometry), 17
sliver_removal() (in module Seis-

micMesh.generation), 22

U
unique_rows() (in module SeismicMesh.geometry),

17

V
vertex_in_entity3() (in module Seis-

micMesh.geometry), 19
vertex_to_entities() (in module Seis-

micMesh.geometry), 16

W
write_velocity_model() (in module Seis-

micMesh.sizing), 21

29

	Contents
	Introduction
	Overview
	Installation
	Basics
	Modules

	Bibliography
	Python Module Index
	Index

